

Improving diagnostic yield in a large inherited retinal dystrophy cohort with high-throughput, NGS-based CNV calling — a clinical evaluation of detection criteria and limitations

<u>Purpose</u>

Although advances in computational tools have enabled the identification of copy number variants (CNVs) from next-generation sequencing (NGS) specific criteria for reliable CNV detection remains largely unknown. Through a high coverage, targeted sequencing cohort, this study aims to test of current NGS-based CNV calling and outline its detection criteria.

<u>Methods</u>

Targeted sequencing of 536 ophthalmology related genes was performed on a cohort of 512 retinal dystrophy patients. The XHMM CNV caller was for CNV detection. Gel analysis and TaqMan qPCR were used as orthogonal screening/confirmation methods. <u>Results</u>

The final dataset contained 153 CNVs across 87 genes with an estimated false positive rate of 10.5% improving overall mutation detection rate of from 48.6% to 52.7%. The smallest confirmed CNV was 97bp in length and the minimum coverage required to identify a true positive CNV was 24 two false negative regions studied had average coverage depths less than 221X.

<u>Conclusions</u>

Our results have reiterated the importance of coverage depth and shown that CNVs down to 97bp are able to be identified. Careful quality control of orthogonal confirmation methods to manage false positives allows for highly sensitive CNV screening with finer resolution than current microar methods.

Figure 4. Size and coverage depth distribution of identified CNVs with Q-score >50. The smallest confirmed CNV was 97bp in length and the minimum coverage required to identify a true positive CNV was 242X. The two false negative regions studied had average coverage depths less than 221X. Recorded false positives were near the median values for coverage and CNV size.

	laba Chiang
Contact	John Chiang
	Molecular Vision Laboratory, Hillsboro,
	Email: jchiang@mvisionlab.com
	Website: molecularvisionlab.com

Nicholas K. Wang¹, Jie Duan¹, Christa Kohnert¹, Kosiso Onwuzu¹, Wei Zhou², John P.W. Chiang¹

¹Molecular Vision Laboratory, ²Centrillion Technologies

Figure 3. Detection of deletion controls identified by gel analysis. Per sample coverage depth and normalized Z-score across CLN3, TRPM1, CACNA2D4, and OCA2 exonic targets. Orange lines indicate positive controls for the deletion region highlighted in red. Blue lines indicate negative controls. The TRPM1 and CACNA2D4 deletion regions had adequate coverage and all positive controls were successfully detected. The CLN3 and OCA2 deletion regions had poor coverage and low normalized Z-score deviations with none of the positive controls identified.

Disclosures

	Table 1. CN	Vs chosen for co	onfirmation by qPCR.									
	Sample	Gene	Exon Interval		CNV	hg19 Interval	Size (kB)	Targets	Q-Score	Z-Score	Coverage Depth	
) data	CNV-174	USH2A	NM_206933.2 exon 63-64		DEL	1:215844314-215848958	4.64	2	75	-6.51	362.36	
	CNV-367	USH2A	NM_206933.2 exon 27-28		DEL	1:216246439-216251704	5.27	2	73	-6.44	985.91	
the limits	CNV-372 CNV-106	CERKL	NM 001030311.2 exon 3-9		DEL	2:182413272-182438611	25.34	7	99	-7.47	0	
	CNV-105	GPR98			DEL	5:90449038-90459717	10.68	2	99	-7.52	498.75	
	CNV-271	EYS	NM_001142800.1 exon 14		DUP	6:65707475-65707596	0.12	1	61	10	1178.68	
	CNV-392 CNV-231	RP9 BBS9	NM_001142800.1 exon 13-14 NM_203288 1 exon 1-6_NM	198428 2 exon 1-4	DEL	6:65/0/4/5-65/6/620 7:33134846-33195314	60.15 60.47	8	82 99	-7.6	333.63 614.25	
sused	CNV-139	RP1	NM_006269.1 exon 2-3		DEL	8:55533527-55534848	1.32	2	96	-7.31	389.43	
5 4564	CNV-168	KIF11	NM_004523.3 exon 2-10		DEL	10:94366022-94381230	15.21	9	99	-3.45	134.22	
	CNV-114 CNV-453	BEST1 CEP290	NM_001139443.1 exon 9, NM NM_025114_3 exon 45-54	_004183.3 exon 10-11	DEL	11:61/29/2/-61/31594 12:88442961-88457892	1.87	10	99	-10	834.45 272 47	
	CNV-420	PRPF31	NM_015629.3 exon 2-3		DEL	19:54621659-54622013	0.35	2	80	-6.67	207.17	
	CNV-247	PRPF31	NM_015629.3 exon 5		DEL	19:54625876-54625973	0.1	1	55	-10	352.15	
our panel	CNV-074	PRPF31 C21orf2	NM_015629.3 exon 2-14 NM_001271441 1 exon 1-6		DEL	19:54621659-54634863 21·45750346-45759077	13.21	12 6	36	-4.8	233.64	
2X. The	CNV-135	TIMP3	NM_000362.4 exon 5		DUP	22:33255167-33255364	0.2	1	31	7.7	2739.11	
	CNV-321	RPGR	NM_000328.2 exon 2-19, NM	_001034853.1 exon 2-15	DEL	X:38128879-38182777	53.9	18	99	-5.87	247.76	
	CNV-472 True Positiv	RP2 ve. Non-Causati	NM_006915.2 exon 2		DEL	X:46/12911-46/135/6	0.67	1	60	-10	0.46	
	Sample	Gene	Exon Interval		CNV	hg19 Interval	Size (kB)	Targets	Q-Score	Z-Score	Coverage Depth	
landuso	CNV-270		NM_015102.4 exon 2-4		DEL	1:6029147-6046349	17.2	3	80	-5.06	763.15	
I allu use	CNV-428 CNV-247	NPHP1	NM 000272.3 exon 1-20		DOP	2:110881368-110962545	81.18	20	99	-4.96	186.97	
rray	CNV-321	NPHP1	NM_000272.3 exon 1-20		DUP	2:110881368-110962545	81.18	20	99	5.71	603.33	
	CNV-334	NPHP1	NM_000272.3 exon 1-20		DEL	2:110881368-110962545	81.18	20	99	-6.28	254.84	
	CNV-347 CNV-465	MERTK	NM_006343.2 exon 3-19		DUP	2:110881368-110962545 2:112702537-112786441	81.18	20 15	99	4.35	246.94	
	CNV-347	TYR	NM_000372.4 exon 1-5		DUP	11:88911122-89028534	117.41	5	99	9.76	1986.61	
	CNV-011	CACNA2D4	NM_172364.4 exon 19-26		DEL	12:1949905-1969372	19.47	8	99	-6.42	284.17	
	CNV-081	CACNA2D4	NM_1/2364.4 exon 19-26 NM_172364.4 exon 19-26		DEL	12:1949905-1969372	19.47	8	99	-6.//	331.44 284 12	
	CNV-247	RPGRIP1	NM_020366.3 exon 17-19		DEL	14:21795782-21798546	2.77	3	99	-6.03	214.02	
	CNV-009	TRPM1	NM_001252020.1 exon 2-7		DEL	15:31355321-31369187	13.87	6	99	-8.64	335.38	
	CNV-095	TRPM1	NM_001252020.1 exon 2-7		DEL	15:31355321-31369187	13.87	6	99	-7.52 -8.57	246.27	
	CNV-303	TRPM1	NM_001252020.1 exon 1-26		DUP	15:31318342-31453162	134.82	24	99	7.06	1207.63	
	CNV-445	CA4	NM_000717.4 exon 2-7		DUP	17:58232675-58235807	3.13	6	99	4.44	501.69	
	Sample	Gene	Exon Interval		CNV	hg19 Interval	Size (kB)	Targets	Q-Score	Z-Score	Coverage Depth	
	CNV-471	SEMA4A	NM_001193300.1 exon 5-8		DUP	1:156128179-156130820	2.64	4	45	3.51	1382.06	
	CNV-332	HMCN1	NM_031935.2 exon 26-30		DEL	1:185969177-185976414	7.24 o	5	31	-2.84	442.48	
90 100	CNV-309	HMCN1	NM 031935.2 exon 44-45		DEL	1:186022957-186024806	1.85	2	75	-6.25	1017.96	
	CNV-332	HMCN1			DEL	1:186084390-186086755	2.37	3	47	-4.13	582.76	
	CNV-188	HMCN1	NM_031935.2 exon 106-107		DEL	1:186157015-186159010	2	2	49	-5.36	1509.7	
	CNV-368 CNV-400	SNRNP200 SNRNP200	NM_014014.4 exon 6-8		DUP	2:96964341-96965165	0.82	3	46	4.13	1688.21	
	CNV-473	PAX3	NM_181457.3 exon 3-4, NM_	000438.5 exon 3-4	DUP	2:223158442-223160376	1.94	3	46	4.12	1801.84	
	CNV-397	PROM1	NM_001145848.1 exon 8		DEL	4:16019946-16020163	0.22	1	49	-9.37	1737.46	
	CNV-005 CNV-415	PAX6	NM_000550.2 exon 5-6 NM_001127612.1 exon 6-11		DEL	9:12/022/1-12/04/05	2.44 8.51	6	41 37	-5.06	1193.32	
	CNV-352	PRPF8	NM_006445.3 exon 12-13		DEL	17:1581812-1582175	0.36	2	46	-5.48	1141.92	
	CNV-451	RPGR	NM_000328.2 exon 16-19		DUP	X:38128879-38136025	7.15	4	52	3.57	583.93	
		CL N	3(0/6 detected)	TRPM1 (3/3 detect	ted)	CACNA	2D4 (3/3 detect	مر ال		0(CA2 (0/5 detected)	
	2500											
90 100	2000										A	
	د											
	1500 O				Λ							
	age							1				
	1000 0											
	Ö				AA							
	500											
									1 2			
	0			Y III								
	15											
	10											
90 100	5				//\\/							
	core											
ied CNVs O-	0 Z-S								۱ 🛒			
sitives and	alized											
$rac{1}{2}$	ormé										v v	
	z ₋₁₀											
minimally	_15											V
	-13											
	-20	3 5	7 9 11 12 15	1 3 5 7 9 11 13 15 17	19 21 22	25 27 1 1 7 10 12	16 19 22 25 2	8 31 31 27	7 2	4 6 8	10 12 14 16 18 20 22)),
	I	0 0	Exons	Exons	21 20		Exons		۷.		Exons	2-

Nicholas Wang – Molecular Vision Laboratory C Jie Duan – Molecular Vision Laboratory E Christa Kohnert – Molecular Vision Laboratory E

Kosiso Onwuzu – Molecular Vision Laboratory C Wei Zhou – Centrillion Technologies I, E John Chiang – Molecular Vision Laboratory I, E